The Gaps between Primes
نویسندگان
چکیده
The union of the straight and—of over a point reflection—reflected series arithmetic progression primes results double density occupation integer positions by multiples primes. remaining free represent diads equidistant to reflection: in case reflection is an even number, they satisfy Goldbach’s conjecture. Further, it allows prove, that number twin unlimited. all greater gaps as two between has well defined lower limit functions well: evaluated with local diads, multiplied total no-primes distance components (the size gaps). infinity these proves any connection infinite aim paper.
منابع مشابه
Small gaps between primes
The twin prime conjecture states that there are infinitely many pairs of distinct primes which differ by 2. Until recently this conjecture had seemed to be out of reach with current techniques. However, in 2013, the author proved that there are infinitely many pairs of distinct primes which differ by no more than B with B = 7 · 107. The value of B has been considerably improved by Polymath8 (a ...
متن کاملBounded gaps between primes
It is proved that lim inf n→∞ (pn+1 − pn) < 7× 10, where pn is the n-th prime. Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small gaps between consecutive primes. A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only (see Theorem 2 below), but it ...
متن کاملLong Gaps between Primes
Let pn denotes the n-th prime. We prove that max p n+16X (pn+1 − pn) ≫ logX log logX log log log logX log log logX for sufficiently large X , improving upon recent bounds of the first three and fifth authors and of the fourth author. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer, proven using the Rödl nibble method. CONTENTS
متن کاملSmall Gaps between Primes or Almost Primes
Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...
متن کاملSmall Gaps between Primes I
Finding mathematical proofs for easily observed properties of the distribution of prime numbers is a difficult and often humbling task, at least for the authors of this paper. The twin prime conjecture is a famous example of this, but we are concerned here with the much more modest problem of proving that there are arbitrarily large primes that are “unusually close ” together. Statistically thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2022
ISSN: ['2160-0368', '2160-0384']
DOI: https://doi.org/10.4236/apm.2022.1212058